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a b s t r a c t

Kernel Fisher discriminant analysis (KFDA) is a very popular learning method for the purpose of classi-
fication. In this paper, we propose a novel learning algorithm to improve KFDA and make it very suitable
for dealing with the large-scale and high-dimensional data sets. The proposed algorithm is termed
individualized KFDA (IKFDA). IKFDA is based on individualized learning, i.e., a strategy to learn and classify
the individual test samples one by one. Our approach seeks to find the appropriate training subset,
referred to as learning area, for each individual test sample, and then employ the learning area to
construct the KFDA model for the test sample. For each individual test sample, IKFDA exploits some types
of similarity measures to determine a learning area that consists of the training samples that are most
similar to the test sample. Compared with the traditional learning algorithms that often exploit the
whole training set to construct the learning models without considering the distribution property of the
test samples, IKFDA can adaptively learn the individual test samples. It is a powerful tool to deal with
the real-world complicated data sets that are often very large-scale and high-dimensional, and are
usually drawn from the different distributions. Extensive experiments show that the proposed algorithm
can obtain good classification results.

& 2016 Elsevier Ltd. All rights reserved.
1. Introduction

In pattern recognition and machine learning, kernel Fisher
discriminant analysis (KFDA) [1,2], or kernel discriminant analysis
(KDA) [3,4] has been widely used for feature extraction and clas-
sification. KFDA is one typical kind of kernel-based approaches. It
is well known that in the kernel-based approaches, we adopt a
nonlinear mapping to map the input data into a high-dimensional
space, i.e., the feature space or kernel-induced space [5], in which
the inner products can be computed by a kernel function [6,7]. We
do not need to know the nonlinear mapping explicitly and the
mapping is determined by our specific kernel function and its
parameters in these kernel-based approaches. In essence, KFDA is
a kernel-based nonlinear extension of linear discriminant analysis
(LDA) [8,9]. When dealing with highly nonlinear data, KFDA often
outperforms LDA in terms of the classification accuracy.

Similar to the traditional learning algorithms such as principal
component analysis (PCA) [10], LDA and support vector machines
ter, HIT Campus of Shenzhen
55 26032458, 13640997970;
(SVMs) [11,12], KFDA exploits the whole training set to construct
the learning models without considering the distribution property
of the test samples. Among these traditional learning algorithms
including KFDA, there exists a common property. That is, these
traditional learning algorithms often use only a unique common
learning model to extract the features of the test samples and
classify them. Here, we refer to those algorithms using a unique
common learning model as commonized learning algorithms. The
commonized learning algorithms are very suitable for the learning
setting in which both the training and test sets have the same
distribution. They can achieve the desirable classification effec-
tiveness when the training and test samples are drawn from the
same distribution.

However, in the real-world applications, e.g., face recognition,
document classification, and webpage analysis, the data sets are
usually very large-scale and high-dimensional, and may be drawn
from the different distributions. Since KFDA and other commo-
nized learning algorithms are based on the common distribution
property of data sets, they often cannot well model each individual
test sample. As a result, KFDA and other commonized learning
algorithms often suffer from the following problems. First of all,
when dealing with the large-scale and high-dimensional data sets,
they usually fail to adaptively construct the learning model for
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each individual test sample and the learning effectiveness of them
may not be desirable in general. Second, if the training set contains
the noises, the learning model in the commonized learning must
be severely affected by the noises and the obtained model cannot
generalize well for new samples. In addition, it is usually difficult
to determine the proper number of the training samples in the
commonized learning. Note that the commonized learning often
needs to load the whole training set to the memory at a time in the
procedure of constructing the learning model. If the number of the
training samples is very large, the space complexity of the com-
monized learning will be high when the data sets are very high-
dimensional. On the other hand, when the number of the training
samples is relatively small, if we exploit these samples to construct
a unique common learning model, it is clear that this learning
model cannot sufficiently model the total samples [13]. This
usually leads to undesirable learning effectiveness.

To address the above problems from which the commonized
learning algorithms including KFDA suffer, many researchers have
proposed different algorithms to improve the commonized
learning. There are two typical types of the improved algorithms.
The first type is based on the local learning algorithms [14–16]. For
each test sample, these algorithms first employ a distance mea-
sure, e.g., the Euclidean distance, to determine the nearest
neighbors for the test sample. Then, they use the determined
neighbors to construct one learning model and classify the test
sample. The local learning algorithms can capture the local
structure of the data. The second type is based on the repre-
sentation approaches [17–22]. Also, these approaches learn and
classify the test samples one by one. Nevertheless, unlike to the
above local learning algorithms, the representation based
approaches first exploit the representation based on a certain
norm, e.g., L1 norm, to represent each test sample, and then exploit
the representation residual to classify the test sample. The repre-
sentation based approaches such as sparse representation classi-
fication (SRC) [17] are suitable for learning the data that contain
the occlusion or noise.

In fact, both the distance in the local learning algorithms and
the representation residual of the representation based approa-
ches can be viewed as the similarity measures. In the local algo-
rithms, the larger the distance between the samples, the less
similar the samples are. The representation based approaches
often use the training samples belonging to each class to represent
the test sample. The less representation residual generally indi-
cates that the test sample is more similar to the samples of that
class. Therefore, the representation residual can be used as a
similarity measure. Notice that both the local learning algorithms
and the representation based approaches exploit only one type of
similarity measures when they learn or classify the test samples.
When we use these algorithms to deal with the large-scale and
high-dimensional data sets, employing only one type of similarity
measure may not guarantee to find an appropriate training subset
to learn each individual test sample. It is well-known that the
training subset of a test sample is crucial to learn and classify this
test sample. For a test sample, if some similarity measure does not
obtain an appropriate training subset, the learning algorithm
might fail. In particular, if the class label of the test sample is not
included in the class label set of the obtained training subset, then,
whatever the learning algorithms we use, the test sample would
not be correctly classified. Therefore, in order to achieve good
classification results, we should adopt the proper similarity mea-
sure scheme to determine the training subset for the test samples.

Based on the above analysis, we propose a novel learning
algorithm in this paper. The proposed algorithm is based on indi-
vidualized learning, i.e., to learn and classify the individual test
samples one by one. The individualized learning algorithm can
adaptively learn the individual test samples. It is very suitable for
learning the large-scale and high-dimensional data sets. The pro-
posed algorithm seeks to find the appropriate training subset,
referred to as learning area, for each individual test sample and
employ the learning area to construct the learning model for this
individual test sample. In the proposed individualized learning, we
learn the test samples one by one. Firstly, we employ multiple
similarity measures to determine the learning area for a test
sample in the feature space. Unlike the traditional local learning
and representation based approaches that are based on only one
similarity measure, our individualized learning exploits three
similarity measures, i.e., the kernel version of the Euclidean dis-
tance, the representation residual and cosine distance in the fea-
ture space. Secondly, although the determined learning area is a
part of the entire training set, it is still high-dimensional and tends
to be nonlinear separable. Since the kernel methods are suitable
for dealing with the nonlinear separable data and can effectively
avoid the small sample size problem [23], we use KFDA to build
model for each test sample. And finally, we use a classifier such as
the nearest neighbor classifier to classify the test sample. We refer
to our proposed algorithm as individualized KFDA, i.e., IKFDA.

Compared with the conventional local learning and repre-
sentation based approaches, the proposed IKFDA has the following
nice properties. First of all, the proposed algorithm can build a
desirable learning model for each test sample and can sufficiently
learn the individual test samples. Second, it is clear that using
multiple similarity measures can improve the robustness of
determining the learning area for the test samples. However, as
the conventional local learning and sparse representation
approaches use only one similarity measure [24,25], they may not
guarantee to obtain the appropriate training subset for the indi-
vidual test samples. Third, when dealing with the large-scale and
high-dimensional data sets, the conventional local learning and
representation based approaches often need some preprocessing
methods such as PCA to reduce the data dimensionality before
building the learning model. On the contrary, IKFDA does not need
the preprocessing methods of dimensionality reduction in the
learning procedure in principle. Extensive experiments show that
the IKFDA algorithm can obtain desirable classification results.

The rest of the paper is organized as follows: In Section 2, we
describe the main idea of the individualized learning. Section 3
introduces a concrete individualized learning algorithm, i.e.,
IKFDA. Section 4 gives the experimental results and illustrates the
effectiveness of the proposed algorithms. Section 5 offers our
conclusions.
2. Main idea of the individualized learning

The main characteristic of the individualized learning is that it
learns and classifies the test samples one by one. For a test sample,
we first exploit the similarity measure to determine the learning
area for this test sample. Then, we build a learning model within
the learning area and extract the features of the test sample.
Finally, we use a classifier, e.g., the nearest neighbor classifier, to
classify the test sample. From the above individualized learning
procedure, we observe that the individualized learning behaves
locally (or is defined in a local manner). Thus, the individualized
learning is consistent, i.e., for any distribution, it achieves the
lowest possible expected loss as L-1 where L is the number of
the training samples [26]. In this sense, the individualized learning
can work well without paying attention to the sample distribution.
However, most commonized learning algorithms need to consider
the sample distribution. For example, the well-known LDA algo-
rithm performs well under the assumption that the data dis-
tribution is Gaussian. The general individualized learning frame-
work is depicted in Fig. 1.
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Fig. 1. The general individualized learning framework.
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Actually, any algorithm can be viewed as one type of the
individualized learning as long as it learns and classifies the test
samples one by one. In the general individualized learning fra-
mework, if we employ only one similarity measure, e.g., the
Euclidean distance often used in the traditional local algorithms, to
select the training subset and build a learning model within this
subset, the individualized learning is essentially a traditional local
learning algorithm. On the other hand, when we use the repre-
sentation residual as a similarity measure, the individualized
learning can be converted into the representation classification
method such as SRC. Based on the different learning settings, we
can develop different concrete individualized learning algorithms.
As discussed in Section 1, KFDA is suitable for building the learning
model for the high-dimensional data sets. Since this work mainly
focuses on how to learn the large-scale high-dimensional data
sets, it is natural to adopt the KFDA to build the learning model in
our work. In order to sufficiently learn the individual test samples,
we need to determine the learning area by using the similarity
measures for each test sample before building the learning model
based on KFDA. Thus, we obtain a novel learning algorithm, IKFDA,
which will be introduced in the following section.
3. Individualized KFDA (IKFDA)

In Section 2, we give the general individualized learning algo-
rithm framework. In this section, we will propose a concrete
individualized learning algorithm. The proposed algorithm con-
tains two main steps. The first step is to use three similarity
measures to determine the learning area for a test sample. The
second step is to use the determined learning area to build the
learning model. We first give the determination of the learning
area in Section 3.1. Second, we build the KFDA learning model
within the learning area in Section 3.2. Third, we give the com-
plexity analysis in Section 3.3.

3.1. Learning area

As mentioned in Section 1, employing only one type of simi-
larity measure may not guarantee to find an appropriate learning
area for a test sample. In the determination of the learning area,
we believe that the scheme using multiple similarity measures is
more robust than that using only one similarity measure. Here, we
use three similarity measures to improve the robustness of
determining the learning area. Since KFDA is performed in the
high dimensional feature space generated by one nonlinear map-
ping which is specified by applying some type of kernel functions,
three similarity measures we used are also computed in this fea-
ture space, and they are the kernel version of the Euclidean dis-
tance, the representation residual and the cosine similarity mea-
sure (i.e., cosine distance) in the feature space.

Before determining the learning area for a test sample, we need
to specify a value K that indicates the number of the samples that
are most similar to the test sample in terms of each similarity
measure. Suppose that the training set is denoted by X ¼
x1; x2;…; xL½ �, where xiARD(i¼1,2,…,L) is the ith training sample
and D is the sample dimensionality. yARD is a test sample. We use
a nonlinear mapping (φ : RD-F where F is the feature space), to
map all the samples into the feature space. Then, we obtain the
training set φðXÞ ¼ φðx1Þ;φðx2Þ;…;φðxLÞ

� �
, and the test sample φðyÞ

in the feature space. In the following, we use three similarity
measures to determine three similarity sets for the test sample,
respectively. The first similarity measure is computed via the
kernel version of Euclidean distance which is referred to as the
kernelized Euclidean distance here.

3.1.1. Kernelized Euclidean distance
Given two samples in the feature space φðyÞ and φðxiÞ, where

φðyÞ is a test sample and φðxiÞ is a training sample. By using the
kernel trick [27], the inner product ðφðxiÞ;φðxjÞÞ between two
samples φðxiÞ and φðxjÞ in the feature space can be computed by
the kernel function kðxi; xjÞ. Then, the Euclidean distance between
them is defined as

d¼ ‖φðyÞ�φðxiÞ‖22 ¼ ðφðyÞ�φðxiÞÞT ðφðyÞ�φðxiÞÞ
¼ ðφðyÞ;φðyÞÞ�2ðφðxiÞ;φðyÞÞþðφðxiÞ;φðxiÞÞ
¼ kðy; yÞ�2kðxi; yÞþkðxi; xiÞ: ð1Þ
Thus, we apply Eq. (1) to determine K nearest neighbors of the

test sample φðyÞ, and these neighbors consists of the first simi-
larity set of φðyÞ. This similarity set is denoted by
Sd ¼ fφðx1dÞ;φðx2dÞ; :::;φðxKd Þg, where φðxidÞAF i¼ 1;2;…;Kð Þ is the ith
neighbor of the test sample φðyÞ. The labels of the K nearest
neighbors are l1d ; l

2
d ; :::; l

K
d .

3.1.2. Cosine similarity measure in the feature space
We determine the second similarity set by employing the

cosine similarity measure. In the feature space, the similarity
between the training sample φðxiÞ and the test sample φðyÞ can be
measured by computing the cosine distance between these sam-
ples as follows:

cos ðφðxiÞ;φðyÞÞ ¼
ðφðxiÞ;φðyÞÞ

‖φðxiÞ‖U‖φðyÞ‖
: ð2Þ

By means of kernel trick

cos ðφðxiÞ;φðyÞÞ ¼
kðxi; yÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

kðxi; xiÞUkðy; yÞ
p : ð3Þ

Note that if we use the Gaussian kernel function, then
kðxi; xiÞ ¼ 1. Thus, Eq. (3) becomes

cos ðφðxiÞ;φðyÞÞ ¼ kðxi; yÞ: ð4Þ
We know that the larger cosine distance between the training

sample and the test sample indicates that the training sample is
more similar to the test sample. For a given test sample, we choose
K training samples that correspond to the first K largest cosine
distances. These training samples constitute the second similarity
set Sc ¼ fφðx1c Þ;φðx2c Þ; :::;φðxKc Þg and their labels are l1c ; l

2
c ; :::; l

K
c .

3.1.3. Kernel representation residual
The third similarity set is determined by employing the kernel

representation method proposed in [21,28,29]. Suppose that there
is a vector β¼ ½b1;b2; :::; bL�T satisfies the following equation:

φðyÞ ¼φðXÞβ¼ φðx1Þ;φðx2Þ;…;φðxLÞ
� �

β
¼ b1φðx1Þþb2φðx2Þþ⋯þbLφðxLÞ: ð5Þ

Left dot-multiplying (5) with φðxiÞ, we can transform Eq. (5)
into the following equation:

ðφðxiÞUφðyÞÞ ¼ b1ðφðx1ÞUφðxiÞÞþ⋯þbLðφðxLÞUφðxiÞÞ ði¼ 1;…; LÞ:
ð6Þ

That is

kðxi; yÞ ¼ b1kðx1; xiÞþ⋯þbLkðxL; xiÞði¼ 1;…; LÞ: ð7Þ
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The above equation can be rewritten as

Kβ¼ yk; ð8Þ
where

K ¼
kðx1; x1Þ ⋯ kðxL; x1Þ

⋮ ⋱ ⋮
kðx1; xLÞ ⋯ kðxL; xLÞ

0
B@

1
CA; yk ¼

kðx1; yÞ
⋮

kðxL; yÞ

0
B@

1
CA:

If K is nonsingular, then we can solve Eq. (8) as follows:

β¼ K �1yk: ð9Þ
Otherwise, we have

β¼ ðKþεIÞ�1yk; ð10Þ
where ε is a small positive constant (in this work, ε is set to 0.01),
and I is the identity matrix.

After obtaining β, we use the following formula to evaluate the
similarity between the training sample φðxiÞ and the testing
sample φðyÞ
rei ¼ ‖φðyÞ�biφðxiÞ‖22

¼ ðφðyÞ�biφðxiÞÞT ðφðyÞ�biφðxiÞÞ
¼ kðy; yÞ�2bikðxi; yÞþb2i kðxi; xiÞ ð11Þ
Based on the above equation, we can use the training sample

φðxiÞ to represent the testing sample φðyÞ, and rei is referred to as
the kernel representation residual. If a training sample has less
residual of representing a test sample, then this training sample is
more similar to the test sample. Thus, we can choose K training
samples that correspond to the first K least kernel representation
residuals, respectively. These samples constitute the third simi-
larity set Sr ¼ fφðx1r Þ;φðx2r Þ; :::;φðxKr Þg and their labels are l1r ; l

2
r ; :::; l

K
r .

From Eq. (11), the kernel representation residual can be viewed as
an extension of the kernelized Euclidean distance. Actually, if bi is
equal to 1 in Eq. (11), the kernel representation residual reduces to
the kernelized Euclidean distance.

3.1.4. Determining the learning area
For a test sample, we need to obtain a learning area for this

sample after determining three similarity sets in the above sub-
sections. To this end, we first measure the similarity between the
test sample and each class that contains the samples in the simi-
larity sets. The number of the total samples in three similarity sets
is denoted as V (V¼3K). Suppose the samples in the similarity sets
belong to q classes: fC 0

1;C
0
2; :::;C

0
qg. And among these sets, there are

np samples belonging to Class C 0
pðp¼ 1;2; :::; qÞ. Then, the similarity

between the test sample and Class C 0
p is calculated as np/V. It is

clear that large np/V indicates high similarity between the test
sample and Class C0

p. Hence, we can obtain a similarity value set
S¼ fS1; S2; :::; Sqg in which the values are sorted in descending
order. These values may be identical in some special case. In
practice, we can choose the appropriate number of the samples in
the similarity sets to avoid this case. We believe that the training
samples associated with the smallest values in the value set S are
usually not helpful to learn the test sample. In general, these
samples may be noises or outliers within the data. Therefore, it is
necessary to discard these samples from the similarity sets. Thus,
the remaining training samples yield a new set, i.e., the learning
area. It is used to build the learning model. We denote the samples
in this learning area as SIL ¼ ½φðx1ILÞ;φðx2ILÞ; :::;φðxMIL Þ� where M is the
number of the samples in the learning area. And the labels of these
determined samples are l1IL; l

2
IL; :::; l

M
IL . Note that among three above

similarity measures used in the feature space, the first similarity
measure can evaluate the correlation between the samples. Unlike
the kernelized Euclidean distance, the cosine distance measure
focuses on the difference on the orientations of sample vectors.
The third measure evaluates the similarity between the samples
from the viewpoint of the representation, and can be viewed as an
extension of the kernelized Euclidean distance. These similarity
measures can capture three types of information from the data set.
Compared with each similarity set, the learning area SIL integrated
from three similarity sets can find more appropriate neighbors to
sufficiently learn the test samples.

Fig. 2 gives an example of learning area. Fig. 2a shows a test
sample that is from Class 35 on the ORL face data set which con-
tains 40 persons (classes) and each person has 10 face images [30].
We use the first similarity measure, i.e., the kernelized Euclidean
distance, to determine the first five nearest neighbors for the test
sample. The determined neighbors are shown in Fig. 2b. From
Fig. 2b, we can see that these nearest neighbors are not from Class
35. Therefore, if we use these neighbors to build the training
model, it is clear that the model cannot correctly learn and classify
the test image. In this case, we can say that the kernelized Eucli-
dean distance is not a suitable similarity measure for this test
image when we determine its five nearest neighbors. In other
words, the kernelized Euclidean distance cannot find an appro-
priate training subset containing five nearest neighbors to learn
this test sample. In this work, we use Gaussian kernel function (the
Gaussian kernel parameter is set to 1.6e4) to determine the
neighbors. Thus, the neighbors obtained by kernelized Euclidean
distance are the same as ones obtained by cosine distance in the
feature. Fig. 2c shows the similarity set containing five nearest
neighbors obtained by using the kernel representation residual.
We observe that the label of the test sample is included in the
labels of these neighbors. Actually, the first two neighbors and the
test sample are from the same class (Class 35) in Fig. 2c. Fig. 2d
shows the final learning area. Also, the final learning area contains
these two neighbors. Therefore, compared with the neighbors
shown in Fig. 2b, the learning area is more suitable for learning the
test sample in Fig. 2a.

3.2. Learning model using KFDA

In the real applications, the large scale and high dimensional
data sets are usually highly nonlinear. Therefore, the samples in
the learning area we determined in the previous subsection are
generally nonlinear. Note that many traditional local learning
algorithms and representation based approaches, e.g., SRC, often
need some dimensionality reduction method such as PCA as a
preprocessing procedure before learning. We believe that using
this dimensionality reduction method before learning can loss the
useful information for learning and classification. To address this
problem, we adopt the kernel Fisher discriminant analysis (KFDA),
which is very suitable for the nonlinear data sets, to build the
learning model and classify the test sample. Indeed, KFDA does not
need the dimensionality reduction as the preprocessing before
learning in theory.

KFDA is the nonlinear case of the linear discriminant analysis
[31]. The basic idea of KFDA is that the input data are mapped into
a high dimensional feature space F by using a nonlinear mapping
φ : RD-F . Then, we perform the linear discriminant analysis in
this feature space [32]. After obtaining the learning area
SIL ¼ ½φðx1ILÞ;φðx2ILÞ; :::;φðxMIL Þ�, we can build our learning model. The
between-class and total scatter matrices of the learning area are
denoted as Sφb and Sφt respectively. The matrices Sφb and Sφt are as
follows:

Sφb ¼
Xl

i ¼ 1

niðφðmiÞ�φðmÞÞðφðmiÞ�φðmÞÞT ; ð12Þ



Fig. 2. A test sample and its similarity sets: (a) the test image, (b) the five nearest neighbors of the test image obtained by using the kernelized Euclidean distance, (c) the five
nearest neighbors of the test image obtained by using the kernel representation residual and (d) final learning area of the test sample.

Table 1
Classification results on the AR data set.

Algorithms N¼3 N¼4 N¼5 N¼6 N¼7

1NN 48.6771.98 54.2771.48 60.1271.20 63.9171.02 67.0470.97
LDA 76.5971.51 82.9770.95 86.0871.20 88.8071.00 89.7570.87
KFDA 79.6271.97 85.1171.27 88.7470.86 91.6471.02 93.0270.96
SVM 60.2171.60 68.4371.52 74.8971.52 78.7570.97 81.2771.69
LRC 59.8371.32 68.2971.14 74.8071.32 79.5671.53 83.6470.96
SRC 80.3571.50 86.0670.55 89.9670.93 92.0370.57 93.9270.62
LSVM 60.1471.32 69.8471.08 77.2171.32 82.4271.09 85.8171.02
IKFDA 83.6071.15 88.4971.12 91.4771.22 93.4070.56 94.8370.59
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Sφt ¼
XM
j ¼ 1

ðφðxjILÞ�φðmÞÞðφðxjILÞ�φðmÞÞT : ð13Þ

where l is the number of the classes in the mapped learning area,

ni is the number of samples in the ith class such that
Pl
i ¼ 1

ni ¼M,

and two vectors φðmiÞ and φðmÞ are the centroid of the ith class
and the global centroid, respectively, in the learning area. The
optimal projective vector β can be obtained via the following
objective function [7]:

βopt ¼ arg max
βTSφb β

βTSφt β
: ð14Þ
According to [7], β¼ PM
i ¼ 1

aiφðxiILÞ, and (14) can be solved by the

following eigen-problem:

GWGα¼ λGGα: ð15Þ

where α¼ ½a1; a2; :::; aM �T , G is the kernel matrix in which each
entry Gij ¼ ðφðxiÞ;φðxjÞÞ ¼ kðxi; xjÞ and k is a kernel function, and W
is as follows:

Wij ¼
1=nk; if xiand xj belong to the kth class
0; otherwise

(
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If we obtain the eigenvector α in (15), we can extract the fea-
tures of the test sample φðyÞ,

ðβ;φðyÞÞ ¼
XM
i ¼ 1

aiðφðxiILÞ;φðyÞÞ ¼
XM
i ¼ 1

aikðxiIL; yÞ: ð16Þ

Similarly, we extract the features of training samples in the
learning area. Thus, we can exploit a classifier to classify the test
sample. Algorithm 1 gives our proposed algorithm.

It is clear that the IKFDA algorithm is an extension of the KFDA
algorithm. KFDA is a special case of IKFDA. In fact, if the learning
region of a test sample is the whole training set in IKFDA, the
classification performance of IKFDA is theoretically equivalent to
that of KFDA.

Algorithm 1. Individualized KFDA (IKFDA)

1. Input the training set: xiARDði¼ 1;2; :::; LÞ, and a test sample

yARD.
2. From the training set, use three similarity measures to deter-

mine the learning area of the test sample y. The training sam-
ples in this area are: SIL ¼ ½φðx1ILÞ;φðx2ILÞ; :::;φðxMIL Þ�;

3. Within the determined learning area, build the KFDA learning
model and extract the features of the test sample by employing
(12)–(16).

4. Classify the test sample using a classifier (the nearest neighbor
classifier).

3.3. Complexity analysis

In this subsection, we first theoretically analyze the time
complexity of our algorithm. For convenience, we give some
notations. Suppose that L is the number of the total training
samples, D is the data dimensionality which is usually very high, T
is the number of the testing samples, and M is the number of the
training samples in the learning area. The proposed algorithm
contains two main steps. The first step is to determine the learning
area for a test sample. This step needs to compute three similarity
sets by adopting the kernelized Euclidean distance, cosine distance
and representation residual in the feature space, respectively. The
time complexities of them are OðLDÞ, OðLDÞ and OðL3þL2DÞ,
respectively. The second step mainly involves the kernel matrix
construction and its eigen-decomposition. Their time complexities
are OðL2DÞ and OðL3Þ, respectively. Hence, the time complexity of
the proposed algorithm is about OðTL2ðLþDÞÞ.

Since IKFDA learns and classifies the test samples one by one, it
is slower than KFDA. Nevertheless, learning and classifying one
test sample does not affect learning and classifying another test
sample in IKFDA. That is, learning and classifying the test samples
is parallely executed in IKFDA. If we perform IKFDA via parallel
computation, the computational efficiency of IKFDA will be largely
improved.

Second, we consider the space complexity. The space com-
plexity of our algorithm is OðMDþM2Þ, and that of the traditional
KFDA is OðLDþL2Þ. When the training set is very large-scale and
the data dimensionality is very high, the traditional commonized
learning algorithms such as LDA and KFDA might fail to learn if the
main memory cannot load the whole training set. In this case, if
we let the learning area of the test sample be a very small part of
the training set, e.g.,M¼0.1*L without significantly degrading the
classification performance, the space complexity of our proposed
algorithm is much lower than that of the traditional KFDA. In this
sense, the proposed algorithm is more suitable for learning the
very large-scale and high-dimensional data sets than the tradi-
tional KFDA. In addition, the proposed algorithm IKFDA can
effectively improve the classification results of the traditional
KFDA in many large-scale learning settings as demonstrated in the
following experiments.
4. Experiments

In this section, we have conducted four experiments to evaluate
the effectiveness of the proposed algorithm. Our experiments use
four real-world data sets: the AR, YaleB, ORL and MNIST data sets.
Among four data sets, the AR, YaleB and ORL are face data sets, and
the MNIST is a handwritten digit data set. The first and second
experiments are conducted on the AR and YaleB data sets,
respectively. The third experiment is conducted on a new het-
eroscedastic data set which is combined by the AR and ORL data
sets. The fourth experiment is conducted on the MNIST data set.
Each sample in these data sets is a gray scale image with 256 gray
levels per pixel. We compare our method with seven other state-
of-the-art classification methods: KNN (K¼1), LDAþNN (i.e., use
the nearest neighbor classifier after LDA), KFDAþNN (use the
nearest neighbor classifier after KFDA), SVM , linear regression
classification (LRC) [33], SRC [17] and local SVM (LSVM) [16,34]. In
the KNN, LDAþNN (denoted by LDA, for simplicity), KFDAþNN
(denoted by KFDA) and our proposed algorithm, the nearest
neighbor classifier is the Euclidean distance based on L2 norm.

In LDA and KFDA, the number of the transformation axes is
c�1 where c is the number of the classes in the data sets. We use
the Gaussian kernel function in KFDA, SVM implemented by using
LIBSVM tool [35], and our algorithm. The optimal Gaussian kernel
function parameters in KFDA, SVM and LSVM are obtained using
the cross validation. For the SRC algorithm, the dimensionality of
all images is first reduced to 300 by using PCA as a preprocessing
procedure. Then, we perform SRC on the dimension-reduced data
sets. There are two important parameters in our algorithm. The
first parameter is the Gaussian kernel parameter. The second one
is related to the learning area, denoted by R which indicates the
ratio of the number of the training samples in each similarity set to
the number of the total training samples. Also, the parameter R is
determined by the cross validation on each data set. We report the
best classification results of these algorithms in our experiments.

4.1. Experiment on the AR face data set

The first experiment is conducted on the AR face database. It
contains over 4000 face images of 126 individuals, which include
frontal views of faces with different facial expressions, lighting
conditions, and occlusions [36,37]. We used the face images of 120
people and each people has 26 images. All the images are cropped
and resized to a resolution of 50�40 pixels. We implemented our
proposed algorithm and seven state-of-the-art classification
algorithms mentioned above.

We randomly grouped the image samples of each individual
into two parts. One part is used for training and the other part is
used for testing. The number of training images that is chosen for
each individual is 3, 4, 5, 6 and 7 which make up the five subsets of
training data. As a result, the numbers of images in these five
subsets are 360, 480, 600, 720 and 840, respectively. The Gaussian
kernel parameter in KFDA is set to 0.0005* d where d is the
average distance of two arbitrary samples in the subset of training
data. For computational convenience, the Gaussian kernel para-
meter in our IKFDA algorithm is set to 0.001* d1 where d1 is the
average distance of two arbitrary samples in the learning area of
each individual test sample. It is worth noting that the Gaussian
kernel parameter of IKFDA (i.e., 0.001* d1) is not optimal for each
test sample. Nevertheless, the classification performance of the
IKFDA algorithm is still better than that of other classification
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algorithms as shown in Table 1. If we use the cross validation to
select the optimal Gaussian kernel parameter in the learning area
of each test sample, we can obtain the better classification per-
formance. In the following experiments, our IKFDA algorithm uses
the same scheme to determine the Gaussian kernel parameter for
the purpose of computational simplicity. The parameter R in our
algorithm is set to 0.3.

We randomly ran each algorithm 10 times. Table 1 shows the
classification results which include the average classification
accuracies and the standard deviations of the classification
accuracies for each algorithm. In this table, N denotes the number
of face images of each individual, and the bold italics highlight the
best classification result on each subset of training data. According
to Table 1, our proposed algorithm significantly outperforms the
other state-of-the-art classification algorithms.

4.2. Experiment on the YaleB face data set

We conducted the second experiment on the YaleB face data
set which contains 10 individuals with 5850 face images [38]. Each
individual has 585 face images. The YaleB data set is a widely used
illumination data set with images spanning a large range of pos-
sible illuminations [39]. In YaleB data set, each image is manually
aligned and cropped, and the size of each image is 40�30. We
randomly grouped the image samples of each individual into two
parts. One part is used for training and the other part is used for
testing. The number of training images that is chosen for each
individual is 5 and 10 which make up two subsets of training data.
The Gaussian kernel parameter in KFDA is set to 0.002* d where d
is defined in the first experiment. For simplicity, the Gaussian
kernel parameter in our algorithm is set to 0.002*d1 where d1 is
also defined in the first experiment. The parameter R in our
algorithm is set to 0.5.

We randomly ran each algorithm 10 times. Similar to Table 1,
Table 2 shows the classification results of each algorithm and N
denotes the number of face images of each individual, and the bold
italics highlight the best classification result on each subset of
training data in this table. From Table 2, we can see that our
proposed algorithm outperforms the other state-of-the-art clas-
sification algorithms.

4.3. Experiment on the ARþORL face data set

The third experiment is conducted on a new data set which is
combined by the AR and ORL data sets (i.e., ARþORL). We denote
this new data set as the OA data set. The AR face database is the
same as that used in the first experiment. The ORL face database
contains 40 individuals with 400 face images. Each individual has
10 images. These images were captured at different times and have
different variations including expression and facial details [40,41].
It is clear that the variations of the AR database and the ORL
database are different. Hence, the new database, i.e., the OA
Table 2
Classification results on the YaleB data set.

Algorithms N¼5 N¼10

1NN 87.0271.97 92.6671.72
LDA 95.8172.51 99.2170.68
KFDA 96.3072.37 99.3170.39
SVM 83.5374.75 94.3172.09
LRC 93.6871.45 98.6770.75
SRC 94.9372.14 98.0970.74
LSVM 90.5673.84 95.9071.60
IKFDA 96.3972.21 99.3570.47
database, is heteroscedastic. We will show later that our proposed
algorithm is still suitable for learning this heteroscedastic data set
and achieves the desirable classification results.

In this experiment, all the images are cropped and resized to a
resolution of 32�32 pixels. Similar to the first experiment, we
randomly grouped the image samples of each individual into two
parts. One part is used for training and the other part is used for
testing. The number of training images that is chosen for each
individual is 3, 4, 5, 6 and 7 which make up five subsets of training
data. As a result, the numbers of images in the five subsets of
training data are 480, 640, 800, 960 and 1120. The Gaussian kernel
parameter in our algorithm is set to 0.002*d1 where d1 is also
defined in the first experiment. The parameter R in our algorithm
is set to 0.2.

We randomly ran each algorithm 10 times. Table 3 shows the
classification results which include the average classification
accuracies and the standard deviations of the classification
accuracies for each algorithm. Also, N denotes the number of face
images of each individual, and the bold italics highlight the best
classification result on each subset of training data in this table.
From Table 3, we can see that our proposed algorithm outperforms
the other state-of-the-art classification algorithms.

4.4. Experiment on the MNIST data set

The fourth experiment is conducted on the MNIST data set [42]
that is a handwritten digit data set with ten classes, i.e., 0,1,2,…,9
(each numeral corresponds to a class). For each numeral, the
training set contains 6000 image samples, and the test set contains
1000 image samples. The size of each image is 28�28. We ran-
domly selected the samples from the training set of each class and
used them as the training samples in this experiment. The number
of training samples that is chosen for each class is 5, 10, 15 and 20
which make up four subsets of training data. For each subset, we
randomly selected the samples from the test set of each class and
used them as the test samples in this experiment. The number of
test samples that is chosen for each class is 300. Thus, we generate
four test subsets respectively corresponding to four subsets of
training data. Each test subset contains 3000 test samples. The
Gaussian kernel parameter in KFDA is set to 0.0002*d where d is
the average distance of two arbitrary samples in the subset of
training data. Similar to the previous experiments, the Gaussian
kernel parameter in our algorithm is set to 0.002*d1 where d1 is
the average distance of two arbitrary samples in the learning area.
The parameter R in our algorithm is set to 0.1. We randomly ran
each algorithm 10 times. Table 4 reports the best classification
results on four subsets of training data for each algorithm. In this
table, N denotes the number of training samples of each class, and
the bold italics highlight the best classification result on each
subset. According to Table 4, IKFDA achieves the highest classifi-
cation accuracies among eight classification algorithms when N¼5
and 10. In other cases, i.e., N¼15 and 20, the proposed algorithm
can achieve similar or better performance in comparison with the
other state-of-the-art classification algorithms. Notice that the
classification results of the LRC algorithm are undesirable in the
first three experiments. From our four experiments, the proposed
algorithm can achieve the most stable and desirable classification
results among these classification algorithms. As a whole, the
proposed algorithm is the best algorithm among these state-of-
the-art classification algorithms in terms of the classification
result.

4.5. Relationship between the R and the classification performance

In this subsection, we will investigate the relationship between
the parameter related to the learning area R and the classification



Table 3
Classification results on the OA(ARþORL) data set.

Algorithms N¼3 N¼4 N¼5 N¼6 N¼7

1NN 52.070.65 57.1671.04 61.571.08 65.6370.74 67.9470.84
LDA 72.9171.45 78.0570.91 79.6671.23 78.7170.99 77.7571.21
KFDA 77.4171.14 83.9870.84 87.0273.62 89.9372.75 92.4370.76
SVM 61.3371.20 68.8271.25 74.9072.07 77.5271.35 80.6471.24
LRC 62.0771.87 69.3170.79 75.5971.24 80.0771.60 84.3671.17
SRC 79.2771.30 85.1471.15 88.7870.84 91.5370.58 92.9370.77
LSVM 61.9771.06 69.9170.82 75.8271.63 79.7570.99 81.1871.35
IKFDA 81.1271.13 86.2870.86 89.5271.26 91.9370.63 93.1570.56

Table 4
Classification results on the MNIST data set.

Algorithms N¼5 N¼10 N¼15 N¼20

INN 59.6673.02 68.7172.24 74.5971.12 76.8171.30
LDA 61.1672.63 65.3372.42 66.4972.24 64.6971.55
KFDA 63.9373.19 73.6271.98 78.3371.51 79.1671.34
SVM 67.6272.66 77.8872.68 82.8571.40 84.7170.66
LRC 67.9172.59 78.1372.73 84.4771.12 85.9670.91
SRC 60.5672.80 69.0472.43 73.9770.79 74.8970.76
LSVM 67.8372.78 78.1272.72 83.2971.39 85.0770.63
IKFDA 68.1272.82 78.1772.42 82.4771.05 83.3470.67
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Fig. 3. The relationship between the ratio R and the classification accuracy of IKFDA on four data sets: (a) AR data set; (b) YaleB data set; (c) OA data set; and (d) MNIST
data set.
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performance on the AR, YaleB, OA and MNIST data sets. In the
experiment, we randomly ran the IKFDA algorithm one time on
each subset of training data. Fig. 3 shows the relationship between
the ratio R and the classification accuracy of the IKFDA algorithm.
For each subset, we have plotted the classification accuracy curve
versus the variation of the values of the R (R¼0.1, 0.2, 0.3, 0.4,
0.5 and 0.6) in this figure. From Fig. 3, we can see that the small
values of the R usually lead to better classification results on most
of training subsets. As shown in Fig. 3, the appropriate ratios on
the four data sets range from 0.1 to 0.5. We can easily choose the
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best ratio which leads to the highest classification accuracy from
the ratio value set {0.1, 0.2, 0.3 0.4 0.5}. Thus, it is not difficult to
effectively select the appropriate parameter R for the IKFDA
algorithm.
5. Conclusions and future work

In this paper, we have introduced a general novel learning
framework, i.e., the individualized learning that learns and clas-
sifies the test samples one by one. The individualized learning
algorithms are consistent and can perform well without con-
sidering the data distribution in general. In order to deal well with
the large-scale and high-dimensional data sets, we have proposed
a concrete individualized learning algorithm, i.e., the individua-
lized KFDA (IKFDA) algorithm. The proposed algorithm exploits
multiple similarity measures to determine the learning area and
builds the KFDA learning model within this learning area. The
extensive experiments show that the IKFDA algorithm can achieve
desirable classification results and outperform other popular state-
of-the-art classification algorithms as a whole.

The individualized learning framework aims to sufficiently learn
and classify each test sample. Its concrete learning form indeed
relies on the learning settings. Different learning settings can lead to
different concrete individualized learning algorithms. In the future
work, we will combine the individualized learning framework with
the other learning algorithms such as Adaboost algorithm to suffi-
ciently learn both the training samples and test samples.
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